Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602511

RESUMO

Meroterpenoid clavilactones feature a unique benzo-fused ten-membered carbocyclic ring unit with an α,ß-epoxy-γ-lactone moiety, forming an intriguing 10/5/3 tricyclic nested skeleton. These compounds are good inhibitors of the tyrosine kinase, attracting a lot of chemical synthesis studies. However, the natural enzymes involved in the formation of the 10/5/3 tricyclic nested skeleton remain unexplored. Here, we identified a gene cluster responsible for the biosynthesis of clavilactone A in the basidiomycetous fungus Clitocybe clavipes. We showed that a key cytochrome P450 monooxygenase ClaR catalyzes the diradical coupling reaction between the intramolecular hydroquinone and allyl moieties to form the benzo-fused ten-membered carbocyclic ring unit, followed by the P450 ClaT that exquisitely and stereoselectively assembles the α,ß-epoxy-γ-lactone moiety in clavilactone biosynthesis. ClaR unprecedentedly acts as a macrocyclase to catalyze the oxidative cyclization of the isopentenyl to the nonterpenoid moieties to form the benzo-fused macrocycle, and a multifunctional P450 ClaT catalyzes a ten-electron oxidation to accomplish the biosynthesis of the 10/5/3 tricyclic nested skeleton in clavilactones. Our findings establish the foundation for the efficient production of clavilactones using synthetic biology approaches and provide the mechanistic insights into the macrocycle formation in the biosynthesis of fungal meroterpenoids.

2.
Org Lett ; 26(3): 642-646, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38214302

RESUMO

Oxosorbicillinol and cage-like acresorbicillinol C are bioactive sorbicillinoids produced by Acremonium chrysogenum. We found that a berberine bridge enzyme-like oxidase AcsorD was responsible for their biosynthesis by gene deletion and heterologous expression. AcsorD catalyzed oxidation of sorbicillinol to form oxosorbicillinol in in vitro assays, which was successively condensed with sorbicillinol to form acresorbicillinol C spontaneously. Finally, site-directed mutation revealed that Tyr525 was the key residue in the catalysis of the oxidation reaction and unlocking cage-like acresorbicillinol C production.


Assuntos
Acremonium , Oxirredutases N-Desmetilantes , Oxirredutases , Cicloexanonas
3.
Appl Microbiol Biotechnol ; 107(4): 1177-1188, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36648527

RESUMO

Physcion is one of natural anthraquinones, registered as a novel plant-derived fungicide due to its excellent prevention of plant disease. However, the current production of physcion via plant extraction limits its yield promotion and application. Here, a pair of polyketide synthases (PKS) in emodin biosynthesis were used as probes to mining the potential O-methyltransferase (OMT) responsible for physcion biosynthesis. Further refinement using the phylogenetic analysis of the mined OMTs revealed a distinct OMT (AcOMT) with the ability of transferring a methyl group to C-6 hydroxyl of emodin to form physcion. Through introducing AcOMT, we successfully obtained the de novo production of physcion in Aspergillus nidulans. The physcion biosynthetic pathway was further rationally engineered by expressing the decarboxylase genes from different fungi. Finally, the titer of physcion reached to 64.6 mg/L in shake-flask fermentation through enhancing S-adenosylmethionine supply. Our work provides a native O-methyltransferase for physcion biosynthesis and lays the foundation for further improving the production of physcion via a sustainable route. KEY POINTS: • Genome mining of the native O-methyltransferase responsible for physcion biosynthesis • De novo biosynthesis of physcion in the engineered Aspergillus nidulans • Providing an alternative way to produce plant-derived fungicide physcion.


Assuntos
Aspergillus nidulans , Emodina , Fungicidas Industriais , Emodina/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Metiltransferases/genética , Fungicidas Industriais/metabolismo , Filogenia
4.
Synth Syst Biotechnol ; 7(4): 1126-1132, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36092273

RESUMO

Microbial cell factories (MCFs) and cell-free systems (CFSs) are generally considered as two unrelated approaches for the biosynthesis of biomolecules. In the current study, two systems were combined together for the overproduction of agroclavine (AC), a structurally complex ergot alkaloid. The whole biosynthetic pathway for AC was split into the early pathway and the late pathway at the point of the FAD-linked oxidoreductase EasE, which was reconstituted in an MCF (Aspergillus nidulans) and a four-enzyme CFS, respectively. The final titer of AC of this combined system is 1209 mg/L, which is the highest one that has been reported so far, to the best of our knowledge. The development of such a combined route could potentially avoid the limitations of both MCF and CFS systems, and boost the production of complex ergot alkaloids with polycyclic ring systems.

5.
ACS Synth Biol ; 11(6): 2163-2174, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35677969

RESUMO

Efficient utilization of both glucose and xylose, the two most abundant sugars in biomass hydrolysates, is one of the main objectives of biofermentation with lignocellulosic materials. The utilization of xylose is commonly inhibited by glucose, which is known as glucose catabolite repression (GCR). Here, we report a GCR-based dynamic control (GCR-DC) strategy aiming at better co-utilization of glucose and xylose, by decoupling the cell growth and biosynthesis of riboflavin as a product. Using the thermophilic strain Geobacillus thermoglucosidasius DSM 2542 as a host, we constructed additional riboflavin biosynthetic pathways that were activated by xylose but not glucose. The engineered strains showed a two-stage fermentation process. In the first stage, glucose was preferentially used for cell growth and no production of riboflavin was observed, while in the second stage where glucose was nearly depleted, xylose was effectively utilized for riboflavin biosynthesis. Using corn cob hydrolysate as a carbon source, the optimized riboflavin yields of strains DSM2542-DCall-MSS (full pathway dynamic control strategy) and DSM2542-DCrib (single-module dynamic control strategy) were 5.3- and 2.3-fold higher than that of the control strain DSM 2542 Rib-Gtg constitutively producing riboflavin, respectively. This GCR-DC strategy should also be applicable to the construction of cell factories that can efficiently use natural carbon sources with multiple sugar components for the production of high-value chemicals in future.


Assuntos
Glucose , Xilose , Bacillaceae , Carbono , Fermentação , Glucose/metabolismo , Lignina , Riboflavina/metabolismo , Açúcares , Xilose/metabolismo
8.
Appl Microbiol Biotechnol ; 106(8): 2981-2991, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35389067

RESUMO

Ergot alkaloids (EAs) are among the most important bioactive natural products. FeII/α-ketoglutarate-dependent dioxygenase Aj_EasH from Aspergillus japonicus is responsible for the formation of the cyclopropyl ring of the ergot alkaloid (EA) cycloclavine (4). Herein we reconstituted the biosynthesis of 4 in vitro from prechanoclavine (1) for the first time. Additionally, an unexpected activity of asymmetric hydroxylation at the C-4 position of EA compound festuclavine (5) for Aj_EasH was revealed. Furthermore, Aj_EasH also catalyzes the hydroxylation of two more EAs 9,10-dihydrolysergol (6) and elymoclavine (7). Thus, our results proved that Aj_EasH is a promiscuous and bimodal dioxygenase that catalyzes both the formation of cyclopropyl ring in 4 and the asymmetric hydroxylation of EAs. Molecular docking (MD) revealed the substrate-binding mode as well as the catalytic mechanism of asymmetric hydroxylation, suggesting more EAs could potentially be recognized and hydroxylated by Aj_EasH. Overall, the newly discovered activity empowered Aj_EasH with great potential for producing more diverse and bioactive EA derivatives. KEY POINTS: • Aj_EasH was revealed to be a promiscuous and bimodal FeII/α-ketoglutarate-dependent dioxygenase. • Aj_EasH converted festuclavine, 9,10-dihydrolysergol, and elymoclavine to their hydroxylated derivatives. • The catalytic mechanism of Aj_EasH for hydroxylation was analyzed by molecular docking.


Assuntos
Alcaloides de Claviceps , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Compostos Ferrosos , Hidroxilação , Simulação de Acoplamento Molecular
9.
Front Bioeng Biotechnol ; 10: 1095464, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36619381

RESUMO

Synthetic biology-based methods (Sbio) and chemical synthesis (Csyn) are two independent approaches that are both widely used for synthesizing biomolecules. In the current study, two systems were combined for the overproduction of chanoclavine (CC), a structurally complex ergot alkaloid. The whole synthetic pathway for CC was split into three sections: enzymatic synthesis of 4-Br-Trp (4-Bromo-trptophan) using cell-lysate catalysis (CLC), chemical synthesis of prechanoclavine (PCC) from 4-Br-Trp, and overproduction CC from PCC using a whole-cell catalysis (WCC) platform. The final titer of the CC is over 3 g/L in this Sbio-Csyn hybrid system, the highest yield reported so far, to the best of our knowledge. The development of such a combined route could potentially avoid the limitations of both Sbio and Csyn systems and boost the overproduction of complex natural products.

10.
Commun Chem ; 5(1): 123, 2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36697820

RESUMO

Since imine reductases (IREDs) were reported to catalyze the reductive amination reactions, they became particularly attractive for producing chiral amines. Though diverse ketones and aldehydes have been proved to be excellent substrates of IREDs, bulky amines have been rarely transformed. Here we report the usage of an Increasing-Molecule-Volume-Screening to identify a group of IREDs (IR-G02, 21, and 35) competent for accepting bulky amine substrates. IR-G02 shows an excellent substrate scope, which is applied to synthesize over 135 amine molecules as well as a range of APIs' substructures. The crystal structure of IR-G02 reveals the determinants for altering the substrate preference. Finally, we demonstrate a gram-scale synthesis of an analogue of the API sensipar via a kinetic resolution approach, which displays ee >99%, total turnover numbers of up to 2087, and space time yield up to 18.10 g L-1 d-1.

11.
Metab Eng ; 69: 198-208, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34902590

RESUMO

Privileged ergot alkaloids (EAs) produced by the fungal genus Claviceps are used to treat a wide range of diseases. However, their use and research have been hampered by the challenging genetic engineering of Claviceps. Here we systematically refactored and rationally engineered the EA biosynthetic pathway in heterologous host Aspergillus nidulans by using a Fungal-Yeast-Shuttle-Vector protocol. The obtained strains allowed the production of diverse EAs and related intermediates, including prechanoclavine (PCC, 333.8 mg/L), chanoclavine (CC, 241.0 mg/L), agroclavine (AC, 78.7 mg/L), and festuclavine (FC, 99.2 mg/L), etc. This fungal platform also enabled the access to the methyl-oxidized EAs (MOEAs), including elymoclavine (EC), lysergic acid (LA), dihydroelysergol (DHLG), and dihydrolysergic acid (DHLA), by overexpressing a P450 enzyme CloA. Furthermore, by optimizing the P450 electron transfer (ET) pathway and using multi-copy of cloA, the titers of EC and DHLG have been improved by 17.3- and 9.4-fold, respectively. Beyond our demonstration of A. nidulans as a robust platform for EA overproduction, our study offers a proof of concept for engineering the eukaryotic P450s-contained biosynthetic pathways in a filamentous fungal host.


Assuntos
Claviceps , Alcaloides de Claviceps , Vias Biossintéticas/genética , Claviceps/genética , Claviceps/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Alcaloides de Claviceps/genética , Alcaloides de Claviceps/metabolismo , Saccharomyces cerevisiae/metabolismo
12.
Org Lett ; 23(20): 7708-7712, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34554766

RESUMO

Heterologous expression of the flavipucine biosynthetic gene cluster in Aspergillus nidulans led to the production of flavipucine (1) and dihydroisoflavipucine (3), as well as six unusual flavipucine related products containing three classes of heterocycles. This combined with gene inactivation, chemical complementation, and transcriptome analysis demonstrated unprecedented ways to form 2-pyridone and 2-pyrone structures by the oxidative rearrangements of pyrrolinone precursors as well as provided insights into the biosynthesis of this important class of natural products.


Assuntos
Aspergillus nidulans/química , Aspergillus nidulans/genética , Produtos Biológicos/química , Estrutura Molecular , Família Multigênica , Piridonas/química , Piridonas/metabolismo , Pironas/química
13.
Appl Microbiol Biotechnol ; 105(16-17): 6333-6343, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34423409

RESUMO

The industrially important meta-cresol (m-cresol, 3-methylphenol) is mainly produced from fossil resources by chemical methods. The microbial production of m-cresol was rarely investigated. Herein, we constructed a platform for the overproduction of m-cresol in a modified fungus Aspergillus nidulans FGSC no. A1145∆ST∆EM, which gave a gram-level titer using starch as carbon resource. For the biosynthesis of m-cresol, the 6-methyl salicylic acid synthase (MSAS)-encoding gene patK and 6-methyl salicylic acid decarboxylase-encoding gene patG from A. clavatus were co-expressed in the host A. nidulans. Multiple strategies, including promotor engineering, gene multiplication, and fed-batch fermentation, were applied to raise the production of m-cresol, which resulted in the titers of 1.29 g/L in shaking flasks and 2.03 g/L in fed-batch culture. The chassis cell A. nidulans A1145∆ST∆EM was proved to possess better tolerance to m-cresol than yeast, as it could grow in the liquid medium containing up to 2.5 g/L of m-cresol. These results showed that A. nidulans has great potential to be further engineered for industrial production of m-cresol.Key points• m-Cresol was de novo biosynthesized by a fungal chassis cell Aspergillus nidulans.• Promoter engineering and gene multiplication implemented the fine-tuned genes expression.• The titer of m-cresol reached 2.03 g/L via fed-batch culture.


Assuntos
Aspergillus nidulans , Aspergillus nidulans/genética , Cresóis , Fermentação , Saccharomyces cerevisiae
14.
ACS Synth Biol ; 9(8): 2087-2095, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32531165

RESUMO

Mycotoxin contamination causes disease and death in both humans and animals. Monascus Red, produced by Monascus purpureus, is used as a food colorant. However, its application is limited by contamination of the nephrotoxin citrinin, which is also produced by the fungus. Suppressing citrinin production by genetic engineering is difficult in a polykaryotic fungus such as M. purpureus. Hence, we developed a CRISPR/Cas system to delete large genomic fragments in polykaryotic fungi. Protoplast preparation and regeneration were optimized, and a dual-plasmid CRISPR/Cas system was designed to enable the deletion of the 15-kb citrinin biosynthetic gene cluster in M. purpureus industrial strain KL-001. The obtained homokaryotic mutants were stable, and citrinin was unambiguously eliminated. Moreover, the Monascus Red pigment production was increased by 2-5%. Our approach provides a powerful solution to solve this long-standing problem in the food industry and enables engineering of polykaryotic fungi for mycotoxin eliminations.


Assuntos
Sistemas CRISPR-Cas/genética , Citrinina/biossíntese , Edição de Genes/métodos , Monascus/metabolismo , Plasmídeos/metabolismo , Cromatografia Líquida de Alta Pressão , Citrinina/análise , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Monascus/genética , Família Multigênica , Mutagênese , Plasmídeos/genética
15.
J Am Chem Soc ; 141(44): 17517-17521, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31621316

RESUMO

A dedicated enzyme for the formation of the central C ring in the tetracyclic ergoline of clinically important ergot alkaloids has never been found. Herein, we report a dual role catalase (EasC), unexpectedly using O2 as the oxidant, that catalyzes the oxidative cyclization of the central C ring from a 1,3-diene intermediate. Our study showcases how nature evolves the common catalase for enantioselective C-C bond construction of complex polycyclic scaffolds.


Assuntos
Catalase/química , Ergolinas/síntese química , Proteínas Fúngicas/química , Aspergillus fumigatus/enzimologia , Aspergillus nidulans/enzimologia , Ciclização , Radicais Livres/química , Modelos Químicos , Oxirredução , Saccharomyces cerevisiae/enzimologia
16.
Sci Adv ; 4(11): eaau4602, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30498782

RESUMO

A plethora of bacterial allosteric transcription factors (aTFs) have been identified to sense a variety of small molecules. Introduction of a novel aTF-based approach to sense diverse small molecules in vitro will signify a broad series of detection applications. Here, we found that aTFs could interact with their nicked DNA binding sites. Building from this new finding, we designed and implemented a novel aTF-based nicked DNA template-assisted signal transduction system (aTF-NAST) by using the competition between aTFs and T4 DNA ligase to bind to the nicked DNA. This aTF-NAST could reliably and modularly transduce the signal of small molecules recognized by aTFs to the ligated DNA signal, thus enabling the small molecules to be measured via various mature and robust DNA detection methods. Coupling this aTF-NAST with three DNA detection methods, we demonstrated nine novel biosensors for the detection of an antiseptic 4-hydroxybenzoic acid, a disease marker uric acid and an antibiotic tetracycline. These biosensors show impressive sensitivity and robustness in real-life analysis, highlighting the great potential of our aTF-NAST for biosensing applications.


Assuntos
Bactérias/metabolismo , Técnicas Biossensoriais/métodos , DNA/metabolismo , Parabenos/metabolismo , Fatores de Transcrição/metabolismo , Ácido Úrico/análise , Sítios de Ligação , Humanos , Técnicas In Vitro , Engenharia de Proteínas , Transdução de Sinais
17.
Appl Microbiol Biotechnol ; 102(17): 7489-7497, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29961098

RESUMO

Uric acid (UA) is an important biomarker for clinical diagnosis. Here, we present a novel signal transduction system for the development of UA biosensors with the characteristics of stability and ease-of-use. In this system, bacterial allosteric transcription factor HucR was used as the bio-recognition element, and the competition between HucR and the restriction endonuclease HindIII-HF to bind to the designed DNA template was employed to enable signal transduction of UA recognized by HucR. The presence of UA can induce conformational change of HucR, which dissociates HucR from the designed DNA template, allowing the access of the competitor HindIII-HF to cut this DNA template. Thus, the signal of UA recognized by HucR is transduced to easily detectable DNA signal. As proof-of-concept, we demonstrated two UA biosensors by coupling this signal transduction system with real-time quantitative PCR (RT-qPCR) and amplified luminescent proximity homogeneous assay (Alpha), respectively. The RT-qPCR-based UA biosensor has a detection limit of 5 nM with a linear range up to 300 nM UA; Alpha-based UA biosensor has a detection limit of 30 nM with a linear range of 100 nM-10 µM. Moreover, the robustness of both biosensors was verified by reliably detecting UA present in a human serum sample. Altogether, the novel UA biosensors developed in this work hold great potential for clinical application.


Assuntos
Técnicas Biossensoriais/métodos , Transdução de Sinais , Ácido Úrico/análise , Técnicas Biossensoriais/normas , DNA/metabolismo , Humanos , Limite de Detecção , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
Chem Commun (Camb) ; 54(38): 4774-4777, 2018 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-29546904

RESUMO

Here, we demonstrate an easy-to-implement and general biosensing strategy by coupling the small-molecule recognition of the bacterial allosteric transcription factor (aTF) with isothermal strand displacement amplification (SDA) in vitro. Based on this strategy, we developed two biosensors for the detection of an antiseptic, p-hydroxybenzoic acid, and a disease marker, uric acid, using bacterial aTF HosA and HucR, respectively, highlighting the great potential of this strategy for the development of small-molecule biosensors.

19.
Chem Commun (Camb) ; 53(1): 99-102, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27869274

RESUMO

A wide range of chemicals can be sensed by allosteric transcription factors (aTFs) in bacteria. Herein, we report a biosensing platform by using isolated aTFs as recognition elements in vitro. Moreover, a general strategy to increase the sensitivity of the aTF-based biosensors is provided. As a proof-of-concept, we obtained by far the most sensitive uric acid and oxytetracycline biosensors by using aTF HucR and OtrR as recognition elements, respectively. As a large number of aTFs are present in bacteria, our work opens a novel route to develop sensitive aTF-based biosensors.


Assuntos
Técnicas Biossensoriais/métodos , Medições Luminescentes/métodos , Fatores de Transcrição/química , Regulação Alostérica , Sequência de Bases , DNA/genética , DNA/metabolismo , Oxitetraciclina/análise , Fatores de Transcrição/metabolismo , Ácido Úrico/análise
20.
Wei Sheng Wu Xue Bao ; 56(3): 418-28, 2016 Mar 04.
Artigo em Chinês | MEDLINE | ID: mdl-27382785

RESUMO

Polyketides represent an important class of structurally and functionally diverse secondary metabolites with high economic value. Among bacteria, Streptomycetes are the main producers of polyketides. To enhance polyketide production in Streptomyces hosts, rational metabolic engineering approaches have been applied, such as overexpressing rate-limiting enzymes, or transcriptional activator, increasing the supply of precursor, removing feedback inhibition by end products and heterologous expression of polyketide biosynthetic gene clusters. In this review, we discuss examples of successful metabolic engineering strategies used to improve polyketide production in Streptomycetes. Meanwhile, we also address future prospective, emerging synthetic biology strategies to dynamically adjust the metabolic fluxes of pathways related to polyketide synthesis.


Assuntos
Policetídeos/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Engenharia Metabólica , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Streptomyces/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...